GBA标志水平 Facebook. LinkedIn 电子邮件 Pinterest 推特 Instagram YouTube图标 导航搜索图标 主要搜索图标 视频播放图标 音频播放图标 耳机图标 加上图标 -图标 检查图标 打印图标 图片图标 单箭头图标 双箭头图标 汉堡图标 电视图标 关闭图标 分类 汉堡/搜索图标
建筑科学

多孔材料水的物理

水具有独特的性质,可以控制与木材和其他建筑材料的互动

混凝土块中的毛细管作用因为水可以抵抗重力。水和亲水物质之间的引力使它能够爬到很高的地方。
图像信用:图像#1:建立美国解决方案中心

我喜欢告诉人们我是一个恢复的学术。但事实是,我没有把物理留下。因为我在建设科学世界职业生涯中,这是不可能的。所以今天,我将深入参加建筑科学的子集,称为建筑物理,因为我们看看多孔材料的水物理学。您还将了解第四级水,而不是液体的,而不是坚固,而不是蒸气。

但是不要害怕!我将通过大量的图片来实现这一切,并且我不会包含一个单一的等式(尽管如果你足够勇敢去看的话,有一个链接)。

水分子的极性

我们从水分子开始。一个氧,两个氢,共价结合在一起。这意味着每个氢原子都和氧原子共用一个电子,两个原子通过这样做来完成它们的外层。

[图片信用:Wikimedia Commons]
事实证明,氧原子在每个氢原子的那个共同的电子比氢的那么强烈地拉动,因此分子的氧侧略有阴性。因此,氢末端略微阳性。因为水分子弯曲(与氧气相对的线性相反),所以分子是极性的。它有一个负端和正端。正电荷集中在氢原子附近的两个区域,如您在左侧的插图中可以看到。

[图片信用:Wikimedia Commons]
当您将一堆水分子放在一起时,各分子的极性导致它们彼此吸引。像收费击退,而非收费吸引。如上所述,每种水分子可以形成弱键,称为氢键,其中另外四个水分子。

水的极性的一种结果是它在比类似分子高温下的液体。例如,二氧化碳是线性的非极性分子,并且在约-71°F(-57℃)下变成气体。如果水就像二氧化碳一样,海洋不会在这里。山脉没有雪。我不会写这篇文章,因为我们人类不会存在,至少不是我们现在的表格。

水分子的极性意味着当您将其与另一种材料接触时,会发生什么取决于哪些吸引力更强:适用于其它材料的水或水。

当水更强烈地吸引到自己时,当你在左边的图左侧看到时,我们称之为疏水或水恐惧。当水更强烈地吸引到其他材料而不是自身的时候,我们说材料是亲水的,或热爱。

当来源是液态水

现在是时候回忆起了热力学第二定律:水从潮湿到干燥区域。

[图像信用:石序和材料测试组]
如果多孔材料的一端在水里,那么毛细孔或毛细血管就会开始充满水。水在毛细血管中的运动取决于表面的亲水性或可湿性以及毛细血管的大小。毛细血管越小,水升得越高,如图所示。

本文顶部的照片完美地说明了水可以从地面移动到多孔混凝土和混凝土块中。阁楼中的水分问题并不罕见,以源于潮湿的基础。

下面的砖的照片显示了水随时间的毛细管上升。一个多小时后,水已经漫过了砖墙的四分之三。

[图片信用:Wikimedia Commons]
水有多高?我在开始时说,我将在没有方程式的情况下做这篇文章,所以我会告诉你有一个你可以用来计算一个水柱可以在毛细管上升的高度。它直接取决于表面的可润湿性和成反比毛细管的半径,水的密度和重力引起的加速度。(如果你想看看等式,请转到毛细血管行动的维基百科页面并寻找标题为半月板的部分。)

由于树木利用毛细作用将水分从地面转移到叶子上,下面的这张照片可能会让你知道水分能上升多高。

[图像信用:能源前锋]

(如果你仔细看,你可能会看到我站在树下。如果你在那里看到我,我会祝贺你的想象力。)

当源是水蒸气时

液体很容易。当我们看看水蒸气与多孔材料相互作用时,事情开始获得乐趣。如果您有这样的材料(干墙,木材,混凝土,纤维素......)一侧潮湿空气,水蒸气会发现其进入毛孔。如果材料是亲水的,则水蒸气将开始粘附在其上。

然后我们开始用一个新词。当表面像这样从空气中吸收水分时,我们称之为吸湿性。这种物质是吸湿的,我们也说它的表面有吸湿的水。

[图片来源:Building Science Corporation]
你需要知道的另一个词是“被吸附”。那些粘在表面的水的单层是第四级水。这就是为什么。

当第一层水分子开始附着在表面时,它就会兴致勃勃地这样做。记住,我们讨论的是吸湿材料,它可以从周围的空间吸收水蒸气。他们真的很喜欢对方!

第二单层也被强烈吸引......但不如第一单层一样强烈地吸引。由于第二单层通过已经存在的单层吸引到表面,因此吸引力静音。同样与第三,第四和第五单层。

[图片来源:Building Science Corporation(经Energy Vanguard修改)]
左边的图表给了你一幅吸引力减弱的图片。当相对湿度增加到10%时,第一层单层膜完成。在第二层单层膜完成之前,相对湿度必须上升到50%。随着相对湿度的不断上升,单层膜不断增加,当你达到100%时,单层膜达到5层。

这种吸引力可以用能量来表示。回想一下,当水沸腾或凝结时吸收或释放的能量叫做汽化潜热。当水蒸气吸附到表面上(或脱离吸附)时,就会产生吸附潜热。

根据Chris Timusk教授的说法,第一层单分子层的吸附热为3700 kJ/kg。第二种是2972 kJ/kg。在第5层,吸附热为2500 kJ/kg,等于液态水的汽化热。

这意味着吸附的水真的与其他三种州不同。这显然不是蒸气。它也不是冰。它与液态水最相似,但它不像液体一样自由,因为它与表面更强烈地绑定到围绕周围的水分子。只有当你获得超过五个单层的单层时,你只看到它开始表现出液态水。

三种运输方式

现在我们准备谈论水如何通过多孔材料移动。三种传输模式是:

  • 蒸汽扩散
  • 表面扩散
  • 毛细管流

蒸汽扩散使水蒸气以蒸汽状态通过材料。它不会粘在它碰到的任何表面上。它只是在毛孔的空隙中漂浮。没有多少水能像这样通过。

表面扩散比蒸汽扩散更能移动水分。这是因为我之前提到的吸引力。由于第一层分子被最强烈的吸引,如果可以的话,第二层分子在能量上更有利于向下移动到第一层,如下所示。

[图片来源:Building Science Corporation(经Energy Vanguard修改)]
同样地,来自第三单层的分子想要向下移动到第二个,第三到第三,等等。以这种方式,水可以通过表面扩散通过多孔材料。

但当毛细血管开始充血时,情况才真正打开。一旦孔隙完全被填满,水可以更快地通过多孔材料。这是毛细管流。

吸附等温线

现在我们可以将所有这一切放在一起,了解这些令人讨厌的东西中的事情发生了什么。下面的图表,从Timusk教授的博士论文中取出,是一个很好的例子。

[图片信用:克里斯·蒂姆苏斯教授]
首先,让我指出这里有三条曲线:两个用于不同的木头和一个用于粘土砖。每个人显示材料中的水分含量作为周围空气的相对湿度的函数。

请注意,每条曲线都呈现出相同的模式:一个快速上升,一个平缓上升,然后又是一个快速上升。回顾上面对吸附和三种水分输送类型的解释,你认为在那些地区正在发生什么?在进入下一段之前,看看你是否能弄明白。

[图片来源:Graham van der Wielen on Flickr.com]
让你的作弊的眼睛从“不小心”首先阅读答案,我会让你看看外星人喝啤酒的这张照片。现在想!

嗯,首先,曲线显示表面扩散和毛细血管。我们知道毛细管流动从更高的相对湿度开始,因此初始上升和扁平部分是表面扩散正在发生的地方。但为什么初始上升如此迅速地变平?

回想一下,第一部单层感觉到表面最强的吸引力。它充满了约10%的相对湿度。曲线的平坦部分大多数在木材中填充了第二个单层加上了一点,并且在砖中明显更多。

当曲线再次拍摄时,毛细血管流动已踢入(见下图)。现在,水分含量随着相对湿度的增加而迅速增加。在这里我们可以看到一些关于材料之间差异的东西。

[图片信用:克里斯·蒂姆苏斯教授]
请注意,毛细血管流不能在砖中开始,直到相对湿度远高于两种木材。嗯。什么可能导致毛细血管不像在木材中的较低相对湿度下填充?当然为什么。这是因为他们更大!

另一件关于吸附等温线需要知道的重要事情是,你上面看到的曲线是针对特定温度的。当你升高或降低温度时,曲线会移动。为什么?因为在一定的相对湿度下,一种材料所能保持的水分量取决于它的温度。

较热的材料不能保持那么多水分,因为那里有足够的热量使它们干燥。较冷的材料含有较多的水分。事实上,比尔·罗斯称其为“材料湿度的基本原则”:温暖的材料往往更干,凉爽的材料往往更湿。

现在你可以看看吸附等温水,了解他们告诉你关于材料的东西......而不是科学家或学术,练习或康复。

来源

我在这篇文章中使用的主要来源是第3章克里斯·提姆斯克教授的博士论文(pdf)。剩下的大部分来自Joseph Lstiburek博士关于建筑科学基础和湿热分析的演讲,维基百科,以及Bill Rose的书,建筑物中的水

Allison贝尔斯他是一位演说家、作家、能源顾问、resnet认证培训师和《能源先锋博客.看看他的深入课程,掌握建筑科学并在Twitter上关注他@energyvanguard.

4评论

  1. Greg Labbe.||#1

    谢谢你!
    博士,

    这很棒。现在有些问题......混凝土毛细管流量随着MPA的增加而增加吗?有关系吗?

    混凝土的临界饱和度(Scrit)与MPa有关系吗?

    最后,我们要讨论的外星人是用毛细管流动还是老式减压法把啤酒拉上来的?

    谢谢你调查这件事,现在我可以安心睡觉了。

  2. 比尔上升||#2

    树木吗?
    用树液来解释毛细管流动有个问题。建筑材料中的毛细血管都有一个半月板(它们有半月板?),即液体和蒸汽之间的界面。树上没有半月板。有一次,一个老家伙称赞我的关节很紧,说:“看起来像这样长出来的。”同样的解释水分填充木质部核。摘要。

  3. GBA编辑器
    马丁Holladay||#3

    在sap
    艾莉森和比尔,
    早在2004年1月,我就写过一篇关于毛细作用的文章,文中写道:“与流行的观点相反,毛细作用并不是枫树汁从地下根部流入树汁桶的原因。”

    一个康奈尔大学网站提供有关此主题的更多信息:

    “是什么让枫树的汁液在春天流动?”在温暖的时期,当温度上升到冰点以上时,树上就会产生压力(也称为正压力)。这种压力导致汁液通过伤口或水龙头孔流出树。在温度低于冰点的较冷时期,会产生吸力(也称为负压),通过根部将水吸入树内。这样就能补充树液,让树液在下一个温暖时期再次流动。虽然液汁通常在温度温暖的白天流动,但众所周知,如果夜间温度保持在零度以上,液汁也会流动。

    “因此,压力和抽吸对SAP流程至关重要。但压力和吸力如何发展?

    汁液流过被称为边材的外层树干。边材由活跃生长的细胞组成,这些细胞将水和营养物质(汁液)从根部输送到树枝。在白天,边材细胞的活动产生二氧化碳。这些二氧化碳被释放到边材的细胞间隙。此外,汁液中的二氧化碳被释放到细胞之间的空间。这两种二氧化碳的来源都会导致细胞内压力的增加。第三种压力来源被称为渗透压,这是由于糖和其他溶解在树液中的物质的存在而造成的。当树受伤时,比如被枫树生产者敲击时,压力迫使树液流出树液。

    “在夜间或在其他时候,温度低于冰冻,二氧化碳冷却并因此收缩。一些二氧化碳也变得溶解在冷却的SAP中。最后,一些SAP冻结。所有三个因素都会产生吸入树。这导致水从土壤中汲取到根部,并通过sapwood行进。当温度超过第二天冻结时,SAP流程再次开始。“

  4. 罗纳德·索维||#4

    固体与空气
    我也觉得有趣的是,虽然固体在冷却时含有更多的水分,但与空气相反。温暖的空气比凉爽的空气含有更多的水分。我们生活的世界很有趣。

登录或创建一个帐户来发表评论。

相关的

社区

最近的问题和回复

  • |
  • |
  • |
  • |